Modeling and optimization of the feature generator for speaker recognition systems
نویسندگان
چکیده
This paper presents issues related to modeling and optimization of the feature generator for the speaker recognition system (ASR – Automatic Speakers Recognition). The parameterization stage of generating a speech signal (features generation) is fundamental in this type of system because the unique vector of features is crucial in the process of speech recognition. The task is to describe the speech signal using as few descriptors as possible without loss of relevant information for speaker recognition. In addition, the parameterization should be robust to acoustic and technical registration conditions and to the recorded linguistic material. The research presented in this paper focused primarily on the multicriteria optimization of selected parameters of the feature generator based on cepstral analysis that additionally enables the selection of features. Finally, the evaluation of the results was based on the analysis of the main components of a set of descriptors for the samples of voice acquired from 24 speakers. Streszczenie. W referacie przedstawiono zagadnienia związane z modelowaniem i optymalizacją generatora cech dla systemu automatycznego rozpoznawania mówcy (ang. Automatic Speaker Recognition – ASR). Etap generacji cech (parametryzacji sygnału mowy) jest fundamentalny w tego typu systemach, z uwagi na fakt, że unikatowy wektor cech ma decydujące znaczenie w procesie rozpoznawania. Zadaniem generatora cech jest opisanie sygnału mowy za pomocą możliwie mało licznego zbioru deskryptorów, bez utraty informacji istotnych z punktu widzenia rozpoznawania mówcy. Ponadto parametryzacja powinna wykazywać odporność na warunki akustyczne i techniczne rejestracji oraz na zawartość lingwistyczną rejestrowanego materiału. Badania przedstawione w referacie koncentrowały się przede wszystkim na wielokryterialnej optymalizacji wybranych parametrów generatora cech opartego na analizie cepstralnej, uwzgledniającej dodatkowo selekcję cech. Oceny otrzymanych wyników dokonano w oparciu o analizę składników głównych (ang. Principal Component Analysis – PCA) zbioru deskryptorów wyznaczonych dla próbek głosu pochodzących od 24 mówców. (Modelowanie i optymalizacja generatora cech dla systemu rozpoznawania mówcy).
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012